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Abstract

We analyze demand settings where heterogeneous consumers maximize utility for

product attributes subject to a nonlinear budget constraint. We develop nonpara-

metric methods for welfare-analysis of interventions that change the constraint. Two

new findings are Roy’s identity for smooth, nonlinear budgets, which yields a Par-

tial Differential Equation system, and a Slutsky-like symmetry condition for demand.

Under scalar unobserved heterogeneity and single-crossing preferences, the coeffi cient

functions in the PDEs are nonparametrically identified, and under symmetry, lead to

path-independent, money-metric welfare. We illustrate our methods with welfare eval-

uation of a hypothetical change in relationship between property rent and neighborhood

school-quality using British microdata.
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1 Introduction

Nonlinear budgets arise in a variety of economic applications. A leading example is hedonic

modelling of markets for differentiated goods with a large number of available varieties, but

where each variety can be viewed as a distinct bundle of a limited number of attributes

(Rosen, 1974). Examples include cars, houses, hotels, etc. An important characteristic

of such markets is that in equilibrium, the marginal price of an attribute typically varies

with quantity, making budget frontiers nonlinear (Diewert, 2003; Ekeland et al 2004). For

example, Goodman (1983) records that for new cars, the willingness to pay for additional

mileage per gallon (MPG) typically decreases as MPG increases. In empirical models of

labour supply, the income tax rate is often progressive, causing potential workers to face

piecewise linear budget constraints. Since presence of bunching at kink points is rare in the

data, MaCurdy et al. (1990, Section II.D) propose replacing the piecewise linear budget-

constraints with a smooth budget frontier to reflect optimization and/or measurement error.1

The present paper develops econometric methods for welfare analysis of policy interventions

in such settings. In contrast to previous research analyzing this problem, we allow for

nonparametric, unobserved preference heterogeneity across consumers, and perform exact

analysis, as opposed to an approximate one based on linear interpolation of nonlinear budget

frontiers (Palmquist, 1988, 2005).

As a motivating example, consider the well-known relationship between housing costs and

neighborhood school quality (Sheppard, 1999). To enable children to attend nearby schools,

local governments often mandate ‘catchment area’rules, which restrict school access solely

to neighborhood children. This, however, means that the presence of a good school makes

its adjoining residential neighborhood attractive, and raises housing costs. This leads to

wealthier families moving in from worse school districts, aggravating existing socioeconomic

segregation. One potential way to stop this vicious cycle is to relax catchment area re-

strictions. This would lead housing costs to become less entangled with school quality, and

change choices in equilibrium. For example, Machin and Salvanes (2016) find that relaxing

catchment area boundaries in Oslo caused significant weakening of the price-school-quality

1We are grateful to Whitney Newey for making us aware of this work.
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relation. However, the overall welfare effects of such policy interventions are likely to be het-

erogeneous, depending on both household preferences over consumption and neighborhood

school quality, and on their income. The question is: how can we calculate the distribution

of these heterogeneous welfare effects, using microdata on housing and schools. The present

paper provides a framework and corresponding econometric methodology to achieve this

objective.

In what follows, we present an economic model of choice for a heterogeneous population

of consumers, each facing a convex budget set characterized by a nonlinear, smooth frontier.

We then derive the analog of Roy’s Identity for this setting, which yields a system of lin-

ear partial differential equations (PDEs). When unobserved heterogeneity is a scalar, and

a single-crossing condition is satisfied by preferences, the coeffi cient functions of the PDEs

can be identified from quantiles of demand. We show that these quantile demand functions

must satisfy a Slutsky like symmetry condition which is different from the standard case of

linear budget frontiers (Hausman and Newey, 2016). Furthermore, welfare at the quantile

can be expressed as a line integral whose value is path-independent under the above sym-

metry condition. These steps can be repeated separately for each quantile of unobserved

heterogeneity to obtain the entire distribution of welfare effects. We emphasize here that

the key purpose of this paper is to derive welfare measures, assuming that the budget fron-

tiers are already identified. This means that the relation between price and the attribute of

interest (e.g. property rent and neighborhood school quality) is assumed to be known, or

consistently estimable from the data. We do not discuss —and indeed, do not contribute to

solving —well-known issues of omitted variable problems that jeopardize the identification

of this relationship (Black, 1999).

Our work is substantively related to Heckman et al. (2010), who show how to nonpara-

metrically identify consumers’marginal utility for a single continuous attribute in a hedonic

setting, where unobserved heterogeneity is a scalar, preferences are quasilinear in consump-

tion and satisfy a single-crossing condition. For the present paper, we borrow the set-up in

Heckman et al. (2010), except that utilities are not assumed to be quasilinear in consump-

tion, and our focus is on welfare effects, which we show to be obtainable without identifying

the underlying marginal utilities, the focus of Heckman et al. (2010). In fact, our paper
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continues a line of research started by the seminal article of Hausman (1981), subsequently

refined in Hausman and Newey (2016), who show that in a demand setting with one con-

tinuous inside good, linear budget frontiers and general heterogeneity, welfare distributions

resulting from a price change are not point-identified. In contrast, our setting allows hedonic

budget frontiers to be nonlinear, but (A) restricts heterogeneity to be one-dimensional, and

(B) imposes a single-crossing condition, analogous to Heckman et al. (2010). We later show

how to include additional attributes into the analysis. Blomquist and Newey (2002) and

Blomquist et al. (2021) have investigated identification of demand with general heterogene-

ity when budget constraints are continuous and piecewise linear, with the slope changing at

finitely many kink points.2

The rest of the paper is organized as follows. Section 2 describes the set-up and states

the key assumptions. Section 3 presents the nonparametric analysis of the problem where

functional forms of utilities and how unobserved heterogeneity enter them are not specified.

In particular, we show how to obtain the analogs of Roy’s identity and Slutsky symmetry in

this setting, and how to use the resulting system of PDEs to obtain welfare measures, using

data from a large number of markets, each characterized by its own budget frontier. Section

3.3 extends the nonparametric analysis to include additional attributes. Section 4 presents

the empirical illustration, and finally, section 5 concludes with directions for future research.

All figures and tables are collected at the end of the manuscript, and additional descriptive

statistics are reported in an Appendix.

2 Set-up

Denote the key product characteristic by S, a generic value assumed by S to be s, and the he-

donic price schedule describing the relation between price and S is given by P (S) ≡ P (S, θ)

where θ is a finite-dimensional parameter. In our empirical illustration, P (S, θ) is the annual

rent for a property whose neighborhood school quality is S. We have data from multiple

markets, each with its own θ. For individual consumers, consumption (of the numeraire) is

2Once demand distribution is identified for hypothetical linear budget constraints, welfare analysis would
resort to methods developed in Hausman and Newey (2016).
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given by C = Y −P (S, θ) where Y is individual income. Individual preferences are described

by the utility function U (S,C, η) where η represents unobserved preference heterogeneity,

and c is consumption. A household maximizes its utility by choosing S optimally, subject to

the budget constraint Y = P (S, θ) +C. For the purpose of this paper, viz. identification of

welfare effects, we assume that the function P (S, θ) in each market is known to the analyst,3

and the marginal (or conditional on observables) distribution of η is identical across markets.

We impose the following assumptions on the utility functions. Let Usc (s, c, η), Ucc (s, c, η),

etc. denote the second order derivatives of U .

Assumption 1 (i) U (·, ·, η) has continuous second-order derivatives in its first two argu-

ments; (ii) η is a scalar, distributed independently of Y , and is identically distributed in

each market, (iii) U (·, ·, η) is strictly increasing in each argument for any fixed η, (iv) the

cross-partial derivatives satisfy Usη (s, c, η) > 0 and Ucη (s, c, η) ≤ 0 for all values of s, c, η on

the support of (S, Y − P (S, θ) , η); (v) P (s, θ) is smooth in both s and θ and is increasing

in s for fixed θ; (vi) for all s, y, θ, η, we have that

 Uss (s, y − P (s; θ) , η)− 2 ∂
∂s
P (s; θ)× Ucs (s, y − P (s; θ) , η)

+
(
∂P (s;θ)
∂s

)2

× Ucc (s, y − P (s; θ) , η)

 < 0. (1)

The smoothness assumption (i) enables us to obtain the key analytical steps for calcu-

lating welfare effects; (ii) is the key substantive restriction on unobserved heterogeneity,4

and implies rank invariance, i.e. the ordering of any two different consumers’demand re-

mains identical across budget frontiers; (iii) is non-satiation in S and consumption, which is

intuitive and is a key suffi cient condition for our welfare measure, viz. the compensating vari-

ation, to be well-defined. Assumption (iv) says that the marginal utility w.r.t. s is strictly

increasing, and marginal utility w.r.t. c is decreasing in η. Intuitively, this means that higher

3Indeed, θ will typically be estimated from the data, but at a parametric rate, and these estimated θs
will be used subsequently as regressors, leading to standard measurement error issues. However, variance of
the measurement error in θ is of order O

(
n−1

)
, where n is the number of observations in each market used

to estimate θ in that market. Hence replacing θ by its estimate will lead to a very small attenuation bias
when n is large. For related discussions, see Heckman et al, (2010), Section 5.

4It allows for η to be a single index of multi-dimensional underlying heterogeneity
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η types have higher marginal utility w.r.t. s and lower marginal utility w.r.t. c. This implies

the so-called ‘single crossing’condition, i.e. that the marginal rate of substitution between

S and C is increasing in η:
d

dη

(
∂U(s,c,η)

∂s
∂U(s,c,η)

∂c

)
> 0.

It will be shown below that assumption (iv) implies that for fixed budget line, demand for S is

strictly monotone in η. This creates a 1-to-1 map between quantiles of observed demand and

quantiles of unobserved preference, which is helpful for identifying welfare. Heckman et al.

(2010) assume utilities are quasilinear in consumption, so that Uηc (s, c, η) ≡ 0; assumption

(iv) is therefore a generalization required to cover the more general non-quasilinear case.

Assumption (v) says S is a ‘desirable’attribute, i.e. consuming more S costs more. Finally,

assumption (vi) says that the hedonic budget frontier should be ‘less convex’to the origin

than the indifference curves,5 which guarantees that utility is maximized uniquely at an

interior point on the budget frontier. In particular, (1) holds if the budget frontier is strictly

concave and indifference curves are strictly convex to the origin.

Remark 1 Note that, other than smoothness, we make no functional form assumption on

utilities, on how they depend on η, or the marginal distribution of η. In particular, we do

not require utilities to be increasing in η.

The policy intervention we wish to evaluate is one that changes the hedonic price frontier.

In our empirical illustration, an important case of interest is where school choice becomes

less or more restrictive, which would weaken (respectively, strengthen) the relationship be-

tween rent and school-quality (Machin and Salvanes, 2016). The pre- and post-intervention

situations are depicted via Figure 1 where, for ease of exposition, η is held fixed.

In Figure 1, consumption is measured on the vertical axis, and school quality along the

horizontal axis. The original budget frontier C = Y −P (S, θ) is depicted by the steeper blue

curve OD. Utility is maximized at C where the indifference curve, convex to the origin is

tangent to OD. Now, due to a policy intervention (e.g. relaxed school choice in our example),

5The slope of the indifference curves in the S −C axes are given by −US
UC
, whereas the budget curve has

slope −p′. Then (1) is equivalent to the difference between −US
UC
− (−p′) = p′ − US

UC
being strictly negative,

i.e. the indifference curves are more convex than the budget frontier.
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the hedonic price schedule changes, and the budget frontier shifts to the flatter orange curve

AE, whence optimal choice is B, representing a fall in utility relative to C.

We wish to compute the welfare effect of this intervention via the compensating variation,

which calculates how much would a household need to be compensated, so that its maximized

utility with the additional income in the post-intervention situation equals its maximized

utility in the pre-intervention period with the original income. To see this graphically,

consider the curve depicted by the dashed curve GF, which is the AE translated vertically

up and is tangent to the original indifference curve at F. Then the compensating variation,

GA>0, is the income supplement needed for the individual facing the blue budget curve so

that she can reach utility equal to what she was enjoying initially.

Given the position of the indifference curves, the CV is positive, indicating that the

consumer is losing as a result of the change, and hence needs to be compensated by a

positive income transfer to restore her utility to its pre-intervention state. However, if the

original indifference curve were tangent to OD at a point below its intersection with AE,

then the shift of the budget line to AE would lead to a gain in utility. Such a consumer

would benefit from the change, and the CV will be negative. Intuitively speaking, the former

type of households value school quality less relative to consumption, and so were initially

consuming relative lower quality schooling. After the intervention, housing costs rise for

lower quality school areas, and therefore these households can afford less consumption than

before. The latter type of household values school-quality relatively more, and choose higher

school quality. The intervention makes housing costs lower for areas with good schools, and

hence expands the budget set of these types of consumers. This reasoning illustrates that

welfare effects of a shift in the budget frontier can be heterogeneous in both magnitude and

sign; hence it is of interest to find the distribution of welfare as the heterogeneity varies across

consumers. We now turn to developing the methods for these nonparametric calculations.

3 Demand and Welfare Analysis

In this section, we first derive the analogs of Roy’s Identity and Slutsky symmetry, and then

move on to show how to identify welfare effects of a change in the budget frontier. We start
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with the case where there is a single attribute S, and then extend the analysis to include

additional attributes.

3.1 Roy’s Identity and Slutsky-Symmetry

For ease of exposition, consider the case where S is the only attribute of interest, the known

hedonic price function is given by P (S, θ), where θ is an unknown vector of parameters.

We will introduce additional attributes later in Sec 3.3. The utility of an η-type consumer

is given by U (s, c, η) where y represents disposable income, s is the amount of S chosen,

c is consumption of the non-S numeraire, and η is unobserved heterogeneity. Utility max-

imization and nonsatiation (assumption (iii)) imply that at the optimal choice S∗ (y, θ, η),

we must have that

Us (s, y − P (s; θ) , η)− Uc (s, y − P (s; θ) , η)
∂

∂s
P (s; θ)

∣∣∣∣
s=S∗(y,θ,η)

= 0 (2)

Finally, the indirect utility function is given by

V (y, θ, η) = U (S∗ (y, θ, η) , y − P (S∗ (y, θ, η) ; θ) , η) . (3)

Then for fixed θ, η, and given assumption 1(i), we have that V (·, θ, η) is differentiable,
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and the envelope theorem condition holds, i.e.

∂V (y, θ, η)

∂y

= Uc (S∗ (y, θ, η) , y − P (S∗ (y, θ, η) ; θ))

+Us (S∗ (y, θ, η) , y − P (S∗ (y, θ, η) ; θ))
∂S∗ (y, θ, η)

∂y

−Uc (S∗ (y, θ, η) , y − P (S∗ (y, θ, η) ; θ))× ∂

∂s
P (S∗ (y, θ, η) ; θ)

∂S∗ (y, θ, η)

∂y

=

 Us (S∗ (y, θ, η) , y − P (S∗ (y, θ, η) ; θ))

−Uc (S∗ (y, θ, η) , y − P (S∗ (y, θ, η) ; θ))× ∂
∂s
P (S∗ (y, θ, η) ; θ)


︸ ︷︷ ︸

=0, by (2)

∂S∗ (y, θ, η)

∂y

+Uc (S∗ (y, θ, η) , y − P (S∗ (y, θ, η) ; θ))

= Uc (S∗ (y, θ, η) , y − P (S∗ (y, θ, η) ; θ)) (4)

Therefore, V (·, θ, η) is strictly increasing, by assumption 1(iii).

Further, letting Pj (s∗ (y, θ, η) ; θ) = ∂P (s;θ)
∂θj

∣∣∣
s=s∗(y,θ,η)

, we have by the envelope theorem

that
∂V (y, θ, η)

∂θj
= −Uc (s∗ (y, θ, η) , y − P (s∗ (y, θ, η) ; θ))× Pj (s∗ (y, θ, η) ; θ) . (5)

From (4) and (5), it follows that for each j = 1, 2, ..., dim (θ), it must hold that

−
∂V (y,θ,η)

∂θj

∂V (y,θ,η)
∂y

= Pj (s∗ (y, θ, η) ; θ) (6)

which can be interpreted as Roy’s identity for a nonlinear budget frontier.

Now, suppose we want to measure welfare-effects resulting from a change in θ from a

to b. A common money-metric measure is the compensating variation C ≡ C (y, η), which

solves

V (y + C, b, η) = V (y, a, η) . (7)

There is a unique solution in C, since ∂V (y,θ,η)
∂y

> 0 with probability 1, by (4).

To find the distribution of C, suppose, initially, that we know the value of η, then we can

learn Pj (s∗ (y, θ, η) ; θ) from the hedonic price schedule in the data. Now, equation (6) can
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be rewritten as a system of linear, first-order partial differential equations of order 1

∂V (y, θ, η)

∂θj
+
∂V (y, θ, η)

∂y
× Pj (s∗ (y, θ, η) ; θ) = 0. (8)

Therefore, the goal is to solve for (7), where V (·) satisfies (8). The key diffi culty in calculating

welfare effects nonparametrically is that η is unobserved. To address this problem, we use the

single-crossing condition and scalar heterogeneity to implement a quantile-based analysis, as

follows.

Quantile-based Analysis: If η is a scalar and S∗ (y, θ, η) is strictly monotone and

invertible in η, then we can interpret the observed τth quantiles of S∗ (y, θ, η), conditional

on y and θ (cf. assumption (ii) above) as the demand of the individual who is located at the

τth quantile of the distribution of η. This is identified by the τth quantile of demand for

those at income y on the budget frontier P (s; θ), i.e.

S∗
(
y, θ, F−1

η (τ)
)

= F−1
S∗(y,θ,η) (τ) ≡ qτ (y, θ) ,

where τ ∈ [0, 1], and qτ (y, θ) ≡ F−1
S∗(y,θ,η) (τ) equals the τth quantile of demand for those

with income y and facing a budget frontier characterized by θ. Further, since the indirect

utility function

V (y, θ, η) = max
s,c

U (s, c, η) s.t. c = y − P (s, θ) ,

by the envelope theorem, we have that

∂

∂y
V (y, θ, η) =

∂U

∂c
(S∗ (y, θ, η) , y − P (S∗ (y, θ, η) , θ)) > 0 (9)

when utility is strictly increasing in consumption, i.e. assumption (iii).

Now, differentiating the LHS of (2), we get that
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{
Uss (S∗, y − P (S∗; θ) , η)− Usc (S∗, y − P (S∗; θ) , η) ∂P

∂s

}
dS∗

dη

+Usη (S∗, y − P (S∗; θ) , η)− Uc (S∗, y − P (S∗; θ) , η) ∂2P (S∗;θ)
∂s

dS∗

dη

− ∂
∂s
P (S∗; θ)× Ucs (S∗, y − P (S∗; θ) , η) dS∗

dη

+
{
∂
∂s
P (S∗; θ)

}2 × Ucc (S∗, y − P (S∗; θ) , η) dS∗

dη

− ∂
∂s
P (S∗; θ)× Ucη (S∗, y − P (S∗; θ) , η)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= 0,

implying

dS∗

dη
= −

Usη (S∗, y − P (S∗; θ) , η)

− ∂
∂s
P (S∗; θ)× Ucη (S∗, y − P (S∗; θ) , η)

Uss (S∗, y − P (S∗; θ) , η)

−Uc (S∗, y − P (S∗; θ) , η) ∂2P (S∗;θ)
∂s2{

∂
∂s
P (S∗; θ)

}2 × Ucc (S∗, y − P (S∗; θ) , η) ∂
∂s
P (S∗; θ)

−2Usc (S∗, y − P (S∗; θ) , η) ∂
∂s
P (S∗; θ)

The denominator of this expression is negative by (1). The numerator is positive by assump-

tions (iv) and (v). Hence dS∗

dη
> 0 with probability 1. Note that Heckman et al. (2010)

derived an analogous result for the case where utility is quasilinear in consumption, so that

Uηc (s, c, η) = 0, which is a special case of our set-up. In any case, the monotonicity of S∗

w.r.t. η will be used below for identifying the distribution of the compensating variation.

In order to implement our method of welfare analysis, it is also useful to introduce a

Slutsky-symmetry type result. This result is of independent interest, as it characterizes

demand when budget frontiers are nonlinear.

Toward that end, define

Qτ (y, θ) ≡ V
(
y, θ, F−1

η (τ)
)
, (10)

i.e. the indirect utility obtained by an individual with income y and located at the τth

quantile of unobserved heterogeneity, i.e. whose value of η equals F−1
η (τ), when the price

function is characterized by the parameter θ.

Lemma 1 (Slutsky-symmetry for nonlinear budget-sets) Suppose the price-attribute

relationship is given by P (s, θ) where θ is of dimension d ≥ 2. Let qτ (y, θ) denote the demand
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at the τ th quantile of η when income is fixed at y. Then for each j, k ∈ {1, 2, ...d}, it holds

that
∂2P (qτ (y,θ),θ)

∂θj∂q

{
∂qτ (y,θ)
∂y

∂P (qτ (y,θ),θ)
∂θk

+ ∂qτ (y,θ)
∂θk

}
= ∂2P (qτ (y,θ),θ)

∂θk∂q

{
∂qτ (y,θ)
∂y

∂P (qτ (y,θ),θ)
∂θj

+ ∂qτ (y,θ)
∂θj

} (11)

Proof. Let e (θ, u) denote the expenditure function, i.e. the solution to

Qτ (θ, e) = u.

This function is well defined since Qτ (θ, e) is continuous and strictly increasing in e. Let

j = 1 and k = 2 WLOG. Then, by definition

∂
∂θ1
{Qτ (θ, e (θ, u))} = 0

=⇒ ∂
∂θ1
Qτ (θ, e (θ, u)) + ∂

∂e
Qτ (θ, e (θ, u)) ∂e(θ,u)

∂θ1
= 0

=⇒ ∂e(θ,u)
∂θ1

= −
∂
∂θ1

Qτ (θ,e(θ,u))

∂
∂e
Qτ (θ,e(θ,u))

by (20)
= ∂P (s,θ)

∂θ1

∣∣∣
s=qτ (e(θ,u),θ)

Similarly,
∂e (θ, u)

∂θ2

=
∂P (s, θ)

∂θ2

∣∣∣∣
s=qτ (e(θ,u),θ)

Thus we have that

∂e (θ, u)

∂θ1

=
∂P (s, θ)

∂θ1

∣∣∣∣
s=qτ (e(θ,u),θ)

(12)

∂e (θ, u)

∂θ2

=
∂P (s, θ)

∂θ2

∣∣∣∣
s=qτ (e(θ,u),θ)

(13)

Now, differentiating (12) w.r.t. θ2, we get

∂2e (θ, u)

∂θ2∂θ1

=
∂

∂θ2

{
∂P (qτ (e (θ, u) , θ) , θ)

∂θ1

}

=
∂2P (qτ (e (θ, u) , θ) , θ)

∂θ2∂q


∂qτ (e(θ,u),θ)

∂y
∂P (qτ (e(θ,u),θ),θ)

∂θ1

+∂qτ (e(θ,u),θ)
∂θ1


+

{
∂2P (qτ (e (θ, u) , θ) , θ)

∂θ1∂θ2

}
(14)

12



Similarly, differentiating (13) w.r.t. θ1, we get

∂2e (θ, u)

∂θ1∂θ2

=
∂2P (qτ (e (θ, u) , θ) , θ)

∂θ1∂q


∂qτ (e(θ,u),θ)

∂y
∂P (qτ (e(θ,u),θ),θ)

∂θ2

+∂qτ (e(θ,u),θ)
∂θ2


+

{
∂2P (qτ (e (θ, u) , θ) , θ)

∂θ1∂θ2

}
(15)

Equating (14) and (15), and evaluating at y = e (θ, u), we get the symmetry condition

∂2P (qτ (y,θ),θ)
∂θ1∂q

{
∂qτ (y,θ)
∂y

∂P (qτ (y,θ),θ)
∂θ2

+ ∂qτ (y,θ)
∂θ2

}
= ∂2P (qτ (y,θ),θ)

∂θ2∂q

{
∂qτ (y,θ)
∂y

∂P (qτ (y,θ),θ)
∂θ1

+ ∂qτ (y,θ)
∂θ1

} (16)

Equation (16) is the analog of Slutsky symmetry when budget constraints are nonlinear.

Indeed, in the standard case with linear budgets, where P (qτ (y, θ) , θ) = θqτ (y, θ), (16)

would reduce to

∂qτ (y, θ)

∂y
qτ (y, θ) +

∂qτ (y, θ)

∂θ2

=
∂qτ (y, θ)

∂y
qτ (y, θ) +

∂qτ (y, θ)

∂θ1

which is the textbook case of Slutsky symmetry with linear budget frontiers.

3.2 Calculation of Money-metric Welfare

We now outline the steps for obtaining welfare effects. Toward that end, first note from (9)

and (10) that
∂

∂y
Qτ (y, θ) > 0,

and from (2) that for all τ ∈ [0, 1], and j = 1, ..., J ,

∂Qτ (y, θ)

∂θj
+
∂P (s, θ)

∂θj

∣∣∣∣
s=qτ (y,θ)

× ∂Qτ (y, θ)

∂y
= 0. (17)

Suppose the parameter θ characterizing the budget frontier changes from a to b, and we

wish to calculate the compensating variation corresponding to this change for this individual

13



with η = F−1
η (τ). The compensating variation is defined as the income supplement required

to maintain the utility of the consumer, i.e. solve for C = C (y, τ) which satisfies

Qτ (y + C, a) = Qτ (y, b) , i.e. C (y, τ) = Q−1
τ (Qτ (y, b) , a)− y. (18)

Now, note that the function P (s, θ) and the quantile demand qτ (y, θ) are identified from

the observed data. Suppose, for concreteness, that the hedonic price function is given by

P (S, θ) = θ1 + θ2 ln (S) . (19)

The values of θ1, θ2 vary across markets. Our goal is to find C which solves

Qτ (y + C, b) = Qτ (y, a) ,

where Qτ (·, θ) is strictly increasing, and satisfies the system

∂Qτ (y,θ1,θ2)
∂θ1

+ ∂Qτ (y,θ1,θ2)
∂y

= 0,
∂Qτ (y,θ1,θ2)

∂θ2
+ ln {qτ (y, θ)} × ∂Qτ (y,θ1,θ2)

∂y
= 0.

(20)

The term ln qτ (y, θ) can be identified from the data by running a quantile regression of

(natural log of) the demanded attribute on individual income and the market level θ, when

there are multiple markets, each with its own θ. It is natural to start with the simple linear

specification for the quantile regression function (which may be generalized to a higher order

polynomial, spline, etc.)

ln qτ (y, θ) = r0 + r1y + r2θ1 + r3θ2, (21)

where the r coeffi cients are obtained via a τ -quantile regression of lnS on individual y and

market-level θ1 and θ2. Before proceeding further, it is important to verify that (21) is indeed

a valid specification for demand.

Proposition 1 In order for (21) to be a valid specification for demand, it is necessary that

r1 + r2 = 0.

14



Proof of proposition 2. From (12), (19), (21), we have that

∂e (θ, u)

∂θ1

by (19)
= 1 =⇒ ∂2e (θ1, θ2, u)

∂θ2∂θ1

= 0. (22)

On the other hand, by (13)

∂e(θ,u)
∂θ2

by (19)
= ln qτ (θ1, θ2, e (θ1, θ2, u))

by (21)
= r0 + r1 × e (θ1, θ2, u) + r2θ1 + r3θ2

=⇒ ∂2e (θ1, θ2, u)

∂θ1∂θ2

= r2 + r1
∂e (θ1, θ2, u)

∂θ1

by (19)
= r2 + r1. (23)

Now (22) and (23) imply that r1 + r2 = 0.

Now suppose the value of the parameter θ characterizing the price frontier changes from a

to b. We wish to find the compensating variation, which is the hypothetical income transfer

that an individual needs when θ = b to be able to reach the utility level she had attained

when θ equalled a. Given heterogeneous preferences, the compensating variation for the

same change in θ is heterogeneous, and we wish to obtain its distribution. To do this, we

fix a value of τ ∈ [0, 1], and develop a method to compute the CV for individuals whose

η = F−1
η (τ). We then vary τ to generate the CV for different quantiles of η.

Toward that end, consider a price path θ (t), with t ∈ [0, 1], such that θ1 (0) = a1,

θ2 (0) = a2, θ1 (2) = b1, θ2 (1) = b2. By definition, the compensating variation at a generic

value of t ∈ [0, 1] is given by C (t, y) = e (θ (t) , ū)− y, will satisfy

Qτ (θ (t) , y + C (t, y)) = ū for all t, (24)

where the initial utility level ū = Qτ (a1, a2, y). Differentiating (24) w.r.t. t we have that for

all t,
d

dt
Qτ (θ (t) , y + C (t, y)) = 0, i.e.

for all t,

∑
j

∂Qτ (θ (t) , y + C (t, y))

∂θj

dθj (t)

dt
+
∂Qτ (θ (t) , y + C (t, y))

∂y

dC (t, y)

dt
= 0.
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This implies

dC (t, y)

dt
= −

∑
j

∂Qτ (θ(t),y+C(t,y))
∂θj

∂Qτ (θ(t),y+C(t,y))
∂y

dθj (t)

dt

by (17)
=

∑
j

dθj (t)

dt
× ∂P (θ, s)

∂θj

∣∣∣∣
θ=θ(t),s=qτ (θ(t),e(θ(t),ū))

(25)

The second term on the RHS of (25) is identifiable from the data across many markets, since

e (θ (t) , ū) = y + C (t, y). So finding the compensating variation for a change in θ from a to

b for an individual at income y and whose η equals its τth quantile is equivalent to finding

C (1, y), where C (t, y) solves (25) with the initial condition C (0, y) = 0. Observe that

C (1.y)− C (0, y) =

∫ 1

0

dC (t, y)

dt
dt

=

∫ 1

0

{∑
j

dθj (t)

dt
× ∂P (θ (t) , qτ (θ (t) , e (θ (t) , ū)))

∂θj

}
dt

=

∫
G

∑
j

∂P (θ, qτ (θ, e (θ, ū)))

∂θj
dθj. (26)

The final expression on the RHS is a line integral of the vector field
(
∂P (θ,qτ (θ,e(θ,ū)))

∂θ1
, ∂P (θ,qτ (θ,e(θ,ū)))

∂θ2

)
along the path G = {θ1 (t) , θ2 (t)}, t ∈ [0, 1] connecting the points (a1, a2) and (b1, b2). The

symmetry condition (16) and the gradient theorem for line integrals (cf. Spiegel 2010, Sec

10.6; Courant and John 1989, Sec 1.10) then imply that the value of (26) is path-independent,

i.e. its value does not depend on the path G. Thus the compensating variation C (1.y) is

well-defined.

In particular, given the specification (19) and (21), equation (25) reduces to the ordinary

16



differential equation

dC (t, y)

dt
(by 21)

=
dθ1 (t)

dt
+
dθ2 (t)

dt
× (r0 + r1 (y + C (t, y)) + r2θ1 (t) + r3θ2 (t))

by r2+r1=0
=

dθ1 (t)

dt
+
dθ2 (t)

dt
× (r0 + r1 (y + C (t, y)− θ1 (t)) + r3θ2 (t))

⇔ dC (t, y)

dt
− r1

dθ2 (t)

dt
× C (t, y)

=
dθ1 (t)

dt
+
dθ2 (t)

dt
× (r0 + r1 (y − θ1 (t))) + r3

dθ2 (t)

dt
× θ2 (t)

This implies

dC (t, y)

dt
− r1

dθ2 (t)

dt
× C (t, y)

=
dθ1 (t)

dt
+
dθ2 (t)

dt
× (r0 + r1 (y − θ1 (t))) + r3

dθ2 (t)

dt
× θ2 (t)

This linear ODE can be solved using the method of integrating factors as

dC (t, y)

dt
e−r1θ2(t) − r1

dθ2 (t)

dt
e−r1θ2(t) × C (t, y)

=
dθ1 (t)

dt
e−r1θ2(t) + e−r1θ2(t)dθ2 (t)

dt
× (r0 + r1 (y − θ1 (t)))

+r3
dθ2 (t)

dt
× θ2 (t) e−r1θ2(t)

=
dθ1 (t)

dt
e−r1θ2(t) − e−r1θ2(t)dθ2 (t)

dt
× θ1 (t)

+ (r0 + r1y) e−r1θ2(t)dθ2 (t)

dt
+ r3

dθ2 (t)

dt
× θ2 (t) e−r1θ2(t)

This implies

d

dt

{
C (t, y) e−r1θ2(t)

}
=

d

dt

{
θ1 (t) e−r1θ2(t)

}
+e−r1θ2(t)dθ2 (t)

dt
(r0 + r1y)

+r3
dθ2 (t)

dt
× θ2 (t) e−r1θ2(t)
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Integrating both sides, we get that

C (t, y) e−r1θ2(t) = Cons+ θ1 (t) e−r1θ2(t) − (r0 + r1y)
e−r1θ2(t)

r1

−r3θ2 (t)
e−r1θ2(t)

r1

− e−r1θ2(t)

r2
1

r3, (27)

where “Cons”denotes a constant. This implies

C (t, y) = Cons× er1θ2(t) + θ1 (t)− (r0 + r1y)
1

r1

− r3θ2 (t)
1

r1

− r3

r2
1

Applying the boundary condition C (0, y) = 0, and θ1 (0) = a1, θ2 (0) = a2, we get

Cons = e−r1a2
{
−a1 + (r0 + r1y)

1

r1

+ a2
r3

r1

+
r3

r2
1

}
.

Replacing in (27), and evaluating at t = 1, using θ1 (1) = b1, θ2 (1) = b2, we get

C (1, y) = er1(b2−a2)

{
−a1 +

r0

r1

+ y +
a2r3

r1

+
r3

r2
1

}
+b1 −

r0

r1

− y − r3b2

r1

− r3

r2
1

(28)

It is clear that C (1, y) does not depend on the path from (a1, a2) to (b1, b2) because the exact

form of θ1 (t) , θ2 (t) as functions of t were never used to derive (28). We state the above

derivation as a proposition.

Proposition 2 Suppose the price function P (θ, S) and the quantile demand function qτ (θ, y)

are defined on connected open sets, and are continuously differentiable on their domain.

Suppose all assumptions on preferences stated in assumption 1 are satisfied. Additionally,

suppose (19) and (21) hold with r1 + r2 = 0. Then the compensating variation due to a

movement of (θ1, θ2) from (a1, a2) to (b1, b2) for an individual at η = F−1
η (τ) is independent

of the path along which (θ1, θ2) changes, and is given by

C (1, y) = er1(b2−a2)

{
r0

r1

+ y +
a2r3

r1

+
r3

r2
1

− a1

}
+b1 −

r0

r1

− y − r3b2

r1

− r3

r2
1

(29)
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An analogous exercise can be done for every other quantiles, which produce different

values of the r’s in (21) and, correspondingly different values of the compensating variation

(29).

Remark 2 Note that Qτ (y, θ) defined in (10) need not equal the τ th quantile of the indirect

utility V (y, θ, η) because V (y, θ, η) need not be monotonic in η. Nonetheless, as τ varies over

[0, 1], we can trace out the distribution of V (y, θ, η). In particular, for each specific quantile,

say, τ = 0.1 or τ = 0.5 etc., we get the value of the compensating variation for individuals

with income y and who are at the lowest decile or the median of unobserved heterogeneity,

respectively. These need not equal the the lowest decile or median respectively of the marginal

distribution of the compensating variation for people with income y.

The previous proposition can be generalized in the obvious way for general price and

quantile functions, as follows.

Proposition 3 Suppose θ ∈ RJ ; the price function P (θ, S) and the quantile demand func-

tion qτ (θ, y) are defined on connected open sets, and are twice continuously differentiable on

their domain. Suppose the Slutsky symmetry condition is satisfied, i.e.

∂2P (qτ (y, θ) , θ)

∂θj∂q

{
∂qτ (y, θ)

∂y

∂P (qτ (y, θ) , θ)

∂θk
+
∂qτ (y, θ)

∂θk

}
=

∂2P (qτ (y, θ) , θ)

∂θk∂q

{
∂qτ (y, θ)

∂y

∂P (qτ (y, θ) , θ)

∂θj
+
∂qτ (y, θ)

∂θj

}

for all j 6= k. Then for any path θ (t), t ∈ [0, 1], with θ (0) = a and θ (1) = b, the compen-

sating variation is given by C (1, y), where C (t, y) is the solution to the ordinary differential

equation
dC (t, y)

dt
=

J∑
j=1

dθj (t)

dt
× ∂P (θ (t) , qτ (θ (t) , y + C (t, y)))

∂θj
,

with initial condition C (0, y) = 0, and this solution is independent of the path θ (t).

The proof of this result is completely analogous to that of the previous proposition, and

uses the fundamental theorem for line integration that line integrals of gradient fields are

path-independent (cf. Courant and John 1989, Sec 1.10, Taylor, 1955 Theorem 13.4.V).
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3.3 Multiple Attributes

To incorporate additional hedonic attributes into the above analysis, consider the additively

separable utility function

U (s, x, c, η) = U1 (s, η) + U2 (x) + U3 (c) , with c = y − P (s, x) ,

where s is the key attribute of interest, x represents the other attributes, y is income, and

the hedonic price function is given by

P (s, x) = P1 (s, θ) + P2 (x, δ)

We want to measure the distribution of the compensating variation C that solves

V (y, θ, δ, η) = V (y + C, β, δ, η) ,

where

V (y, θ, δ, η) = max
s,x

U (s, x, y − P1 (s, θ)− P2 (x, δ) , η)

If the attributes are continuous and the utility function is differentiable in each, then the

first order conditions for maximization are given by

∂U1 (s, η)

∂s
− U ′3 (y − P1 (s, θ)− P2 (x, δ))× ∂P1 (s, θ)

∂s
= 0 (30)

∇xU2 (x)− U ′3 (y − P1 (s, θ)− P2 (x, δ))×∇xP2 (x, δ) = 0 (31)

while a suffi cient second order condition for an interior maximum is that the matrix

H =



∂2U1(s,η)
∂s2

− U ′′3 ×
(
∂P1(s,θ)

∂s

)2

+U ′3 ×
(
∂P1(s,θ)

∂s

)2 ∇xP2 (x, δ)× U ′′3 ×
∂P1(s,θ)

∂s

∇xP2 (x, δ)× U ′′3 ×
∂P1(s,θ)

∂s

∇xxU2 − U ′3 ×∇xxP2 (x, δ)

−U ′′3 ×∇xP2 (x, δ)×∇xP2 (x, δ)′

 (32)

is negative definite for all s, x.
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Now, evaluating the first-order conditions (30)-(31) at the optimal choice and differenti-

ating w.r.t. η, we have that

∂U1 (S∗, η)

∂s
− U ′3 (y − P1 (s∗, θ)− P2 (x, δ))× ∂P1 (S∗, θ)

∂s
= 0

∂2U1(S∗,η)
∂s∂η

+ ∂2U1(S∗,η)
∂s2

∂s∗

∂η

+U
′′
3 (y − P1 (S∗, θ)− P2 (x, δ))×

{
∂P1(S∗,θ)

∂s

}2

× ∂S∗

∂η

+U
′′
3 (y − P1 (S∗, θ)− P2 (x, δ))× ∂P1(x∗,θ)

∂s
×∇xP2 (x, δ) ∂x∗

∂η

−U ′3 (y − P1 (S∗, θ)− P2 (x, δ))× ∂2P1(S∗,θ)
∂s2

∂S∗

∂η

 = 0 (33)

Similarly

∇xxU2 (x)× ∂x∗

∂η
− U ′′3

{
∇xP2 (x, δ)∇xP2 (x, δ)′

} ∂x∗
∂η
− U ′′3 {∇xP2 (x, δ)} ∂P1 (s∗, θ)

∂s

∂s∗

∂η
= 0

(34)

Equations (33)-(34) can be written in matrix notation as

H ×

 ∂s∗

∂η

∂x∗

∂η

 =

 −∂2U1(s∗,η)
∂s∂η

0


where H is defined in (32). Therefore,

 ∂s∗

∂η

∂x∗

∂η

 = H−1

 −∂2U1(s∗,η)
∂s∂η

0


implying

∂S∗

∂η
= −H11 × ∂2U1 (s∗, η)

∂s∂η

where H11 is the (1, 1)th entry of the matrix H−1. Now since H is negative definite, so is its

inverse. Therefore H11 must be strictly negative. Therefore, if ∂
2U1(S∗,η)
∂s∂η

< 0, then it follows

that ∂V ∗

∂η
> 0. That is, for given y, θ, δ, we have that S∗ (y, θ, δ, η) is strictly increasing in η.

Therefore, we have that for each τ ∈ [0, 1],

S∗
(
y, θ, δ, F−1

η (τ)
)

= F−1
s∗(y,θ,δ,η) (τ) ,
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i.e. the value of S∗ (y, θ, δ, η) at the τth quantile of η equals the τth quantile of s∗ for fixed

values of y, θ, δ.

For measuring the welfare effect of a change in θ, holding δ fixed, we follow the essentially

the same steps as outlined above. In particular, we have that

V (y, θ, δ, η) = U1 (s∗, η) + U2 (x∗) + U3 (y − P1 (s∗, θ)− P2 (x∗, δ))

so that, by the envelope theorem, one gets

−
∂V (y,θ,δ,η)

∂θ
∂V (y,θ,δ,η)

∂y

=
U ′3 ×

∂P1(s,θ)
∂θ

U ′3

∣∣∣∣∣
s=S∗(y,θ,δ),x=x∗(y,θ,δ)

=
∂P1 (s, θ)

∂θ

∣∣∣∣
s=V ∗(y,θ,δ)

.

This last simplification, i.e. that the RHS depends only on S∗ (y, θ, δ) and not on x∗ (y, θ, δ),

results from the additive separability of the hedonic price function.

Evaluating this at η = F−1
η (τ), we get (17) replaced by

∂Qτ (y, θ, δ)

∂θ
+
∂P1 (s, θ)

∂θ

∣∣∣∣
s=F−1

s∗(y,θ,δ)(τ)

× ∂Qτ (y, θ, δ)

∂y
= 0, (35)

where F−1
S∗(y,θ,δ) (τ) is the τth quantile of the optimal (i.e. chosen) s across individuals with

income y in markets characterized by (θ, δ). Therefore, we can apply the method outlined in

the previous subsection, holding δ fixed, and obtain the value of the compensating variation

for each type defined by a quantile of η.

4 Empirical Illustration

4.1 Data

The dataset used for our illustration comes from the restricted-access version of Wave 2015 of

English Housing Survey (DCLG, 2018), which is a nationally representative survey on hous-

ing stock, conditions, and household characteristics. We use the data on rented properties.

For each property, we observe the annual rent as well as a range of property characteristics,

including floor area, number of floors, dwelling type (terrace, detached, flat, etc.), age, num-
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ber of bathrooms, bedrooms, and living rooms, and an index of local economic deprivation,

measured at the level of the so-called ‘Lower Layer Super Output Area’. We also observe a

set of property and household characteristics, including structural features of the property

(e.g. number of bedrooms, floor area etc.), net annual income of the household, whether the

household receives housing benefits, and tenure type, i.e. whether renting privately, via local

authority provision, or through housing associations.

To proxy for school quality, we use the average point score per pupil for secondary

schools. The point score comes from the Key Stage 4 data in the School Performance

Tables, commonly known as league tables.6 These data are publicly available via the UK

government’s offi cial website, GOV.UK. We exclude independent, i.e. private, schools and

schools for children with special educational needs, i.e. special schools, because they follow

different admission procedures and cater to a distinct population.

Each property is matched to the nearest school based on postcode proximity. The match-

ing process was carried out using the open-source geographic information system software,

QGIS. We start with a total of 6,611 property-school matched observations. We then exclude

110 cases where household incomes are negative after accounting for rent. To remove the

outliers, we further drop the households with rent-to-income ratios above the 95th percentile

and those within the top or bottom 5 percent of the income distribution, leading to excluding

866 observations. The final sample includes 5,635 properties, each matched to the nearest

school.

Table A.1 of the Appendix presents the descriptive statistics for the dataset. On average,

households in our sample have a post-tax weekly income of £ 396, with around £ 111 allocated

to rent. Around 28 percent of households rent privately, while the remainder are social

renters, either from local authorities or housing associations. Approximately 56 percent of

the respondents receive housing benefits, and 55 percent reside in areas within the three most

deprived deciles. For the purpose of empirical application, we reduce the dimensionality of

the property and household characteristics by using its first principal component.7

6Key Stage 4 represents the two years of education for students aged 14 to 16, corresponding to Years 10
and 11 in the English education system.

7Appendix Table A.2 reports the correlations between the original variables, while Appendix Table A.3
provides the loadings on the first principal component.
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Table 1 presents the results of the hedonic regression for property rental prices for the

whole of England. The rents are positively and significantly associated with the quality of

the nearest school: an increase in one standard deviation in school quality is associated with

extra £ 7.5 or 7 percent of weekly rent.8 The literature on the relationships between school

quality and rental prices is scarce, making it hard to compare our result to earlier findings.9

Our estimate is at the upper bound of what is typically found in the larger literature that

focuses on purchase property prices (Machin, 2011).

4.1.1 Computation Steps

The computation of welfare is done through the following steps, where for simplicity, we use

τ = 0.5 for illustration.

1. Construct the scalar index X which equals the first principal component of all non-

S attributes (STATA command pca). This is done to reduce the dimension of the

covariates.

2. Divide locations into M markets. For each market, estimate the price function by

regressing price of unit on lnS and X; call the coeffi cients α1m, α2m, δm, m = 1, ...M

Pmi (S,X) = α1m(i) + α2m(i) lnSi + δm(i)Xm(i)

3. Run a linear median regression (qreg in STATA), using all observations, of lnSi on an

intercept and yi, α1m(i), α2m(i) and δm(i)

med
(
lnSi|yi, α1m(i), α2m(i), δm(i)

)
= r0 + r1

(
yi − α1m(i)

)
+ r3α2m(i) + r4δm(i)

where m (i) is the market in which i lives

8One standard deviation of logarithm of total average point score per pupil equals 0.20.
9To the best of our knowledge, Bayer, Ferreira, and McMillan (2007) is the only paper that includes an

analysis of rental prices. They use a dataset that combines rental and purchase prices to study the association
with elementary school quality. They found that households are willing to pay less than 1 percent more in
house prices when the average school performance increases by 5 percent. We estimate a moderately higher
relationships of 1.7 percent, focusing solely on secondary schools and renters.
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4. Fix a value of y = y0, δ = δ0 (say, median values of y and δ in the data)

5. Then consider the change in α1, α2 from (a1, a2) to (b1, b2) (say, from the bottom

quartile to top quartile)

6. Calculate compensating variation as

CV = er1(b2−a2)

{
r0

r1

+ y0 +
a2r3

r1

+
r3

r2
1

− a1

}
+b1 −

r0

r1

− y0 −
r3b2

r1

− r3

r2
1

7. Replace median in Step 3 to other quantiles, e.g. τ = 0.25, 0.75 etc. and repeat steps

4-6.

4.2 Results

In this section, we report the results obtained by applying the methods outlined in Section

4.1.1 with a single attribute, viz. school-quality. For the estimation we split the dataset into

9 markets, represented by English regions: North, East Yorkshire and the Humber, North

West, East Midlands, West Midlands, South West, East England, and South East London.

Table 2 presents the results of hedonic regressions for rental prices estimated for different

regions. The model is described in Step 2 of Section 4.1.1. The estimates for the relationship

between rental prices and school quality vary from 2.92 in North East to 40.48 in London.

Table 3 reports the results of a linear quantile regression for the logarithm of the school

quality presented in Step 3 of Section 4.1.1. To control for endogeneity, the term y−α1m(i) in

the model is instrumented with s− α1m(i), where s is the level of past year savings reported

by the household, and using the ‘ivqreg’command in STATA, implementing the method of

Chernozhukov and Hansen 2004. The model produces the following results. The estimate of

r1 is positive and decreasing across quartiles: income affects the demand for school quality

less for the households who value schools more. The estimate of r3 is negative and increasing

from 25th to 75th percentile, i.e. its magnitude decreases: when the relationships between

school quality and prices grow stronger, demand decreases less for those who value schools
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more. Both coeffi cient are significant for the 25th and 50th percentile, but not for the 75th

percentile of the distribution of school quality.

We now introduce a hypothetical policy change that increases the sensitivity of rental

prices to school quality. An example of such policy would be introducing more strict distance

criteria for school admission. In particular, we change the relationships between the school

quality and rental prices, α2m(i), from the 25th percentile of the distribution across the

markets (18.30 in the North West) to the 75th percentile (28.56 in the East), and analogously

exchange the constant term. By design, rental prices near better schools should increase,

while the prices near worse schools should go down. Figure 2 presents the change in the

relationship between school quality and rental payments as a result of the policy change. In

our sample, rents increase for the majority of school quality levels, with only houses near

the worst schools becoming cheaper to rent.

The resulting estimates of compensating variation for different quantiles of η evaluated at

specific quantiles of income are presented in Table 4 and Figure 3. The policy change results

in a universal welfare loss. Compensating variation at the median preference for school

quality (η = F−1
η (0.5)), evaluated at y0 equal to the median income, equals £ 14, which

constitutes 13 percent of average weekly rent in England. Households at the same income

that live near schools of higher quality (i.e. have higher η) experience a greater welfare loss

that those living near worse schools. This is to be expected, as their rents increase more, see

Figure 2. For households at identical percentiles of η, those with higher incomes experience

higher loss. This is again to be expected, as comparatively richer households are likely to

live near better schools, where housing costs rise after the policy change, leaving lesser funds

for consumption.

As a robustness check, we also estimated the compensating variation for deciles of prefer-

ence for school quality between the 20th and 80th percentiles, and find that the same patterns

hold for the compensating variation. These additional results for deciles are presented in

Table 5 and Figure 4.
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5 Conclusion

In this paper, we analyze individual demand of attributes in markets characterized by

smooth, nonlinear budget constraints. We provide an econometric method of computing

welfare effects of policy interventions that change the budget frontier. The method works by

deriving the analog of Roy’s identity when preferences are nonsatiated and budget-constraints

are nonlinear. This analog takes the form of a system of PDEs that involve partial deriva-

tives of the indirect utility function with respect to income and with respect to parameters

characterizing the price function. We show how dimension restrictions on unobserved het-

erogeneity and a single-crossing property of preferences enable one to identify the coeffi cient

functions in these PDEs, and then derive and use a set of Slutsky-like symmetry conditions

to calculate welfare effects resulting from a change in the budget frontier. We provide a

practical illustration of our methods to evaluate welfare effects of a hypothetical change in

relationship between property rent and neighboring school quality in England.

Two issues are left to future work. The first is to develop methods for flexible calculation

of the budget frontier, correcting for potential omitted variable bias, and possibly using

penalized regression with many covariates. The second is to develop methods of inference

for the estimated welfare thereof.
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Tables

Table 1: Hedonic regression results for England.
Weekly rent

Logarithm of total average point score per pupil 37.384***
(2.752)

First principal component of property characteristics 3.977***
(0.279)

Constant -125.187***
(16.243)

R-squared 0.06
Number of observations 5,635

Note: Standard errors in parentheses. * p<0.10, ** p<0.05, *** p<0.01
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Table 2: Hedonic regression results by region.
North East North West Yorkshire and E. Midlands W. Midlands East London South East South West

the Humber
Logarithm of school quality 2.927 18.297*** 16.274*** 25.836*** 18.563*** 28.556*** 40.484** 26.747*** 30.954***

(3.173) (4.857) (4.626) (6.574) (6.021) (7.064) (16.111) (7.858) (9.162)
First principal component 4.451*** 4.035*** 5.239*** 5.249*** 4.880*** 5.900*** 8.911*** 5.238*** 5.216***

(0.527) (0.436) (0.512) (0.616) (0.522) (0.684) (1.262) (0.801) (0.761)
Constant 53.490*** -28.164 -25.139 -76.485** -30.314 -73.695* -119.299 -52.004 -92.781*

(18.361) (28.671) (27.252) (38.342) (35.359) (41.310) (96.190) (46.566) (54.412)
R2 0.16 0.10 0.15 0.15 0.14 0.13 0.07 0.07 0.10
Observations 385 829 666 497 596 681 672 782 527

Note: Standard errors in parentheses. * p<0.10, ** p<0.05, *** p<0.01
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Table 3: Quantile instrumental variable regression estimates for school quality demand at
different quartiles.

25th percentile 50th percentile 75th percentile
y − α1m(i) 0.00066** 0.00047*** 0.00022

(0.00027) (0.00016) (0.00017)
α2m(i) -0.00401* -0.00252** -0.00105

(0.00211) (0.00122) (0.00135)
δm(i) 0.01553*** 0.01136*** 0.01119***

(0.00464) (0.00337) (0.00293)
Constant 5.46753*** 5.66965*** 5.85488***

(0.07841) (0.04600) (0.04970)
Observations 5635 5635 5635

Note: To control for endogeneity, the term y−α1m(i) in the model is instrumented with s−α1m(i), where

s is the level of savings reported by the household. F-statistics for the first stage from a linear regression

model for the mean equals 47.97. Standard errors in parentheses. * p<0.10, ** p<0.05, *** p<0.01
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Table 4: Compensating variation estimates for quartiles of preference for school quality,
GBP.

Income percentile
School quality percentile 25th percentile 50th percentile 75th percentile
25th percentile 11.8520 12.4455 13.2846
50th percentile 13.6383 14.0606 14.6575
75th percentile 15.0347 15.2322 15.5114
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Table 5: Compensating variation estimates for deciles of preference for school quality, GBP.
Income percentile

School quality percentile 25th percentile 50th percentile 75th percentile
20th percentile 11.6858 12.2037 12.9359
30th percentile 12.2099 12.7434 13.4976
40th percentile 13.0697 13.4612 14.0146
50th percentile 13.6383 14.0606 14.6575
60th percentile 14.1730 14.5000 14.9621
70th percentile 14.7370 14.9303 15.2035
80th percentile 15.4711 15.6454 15.8919
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Figure 1: Compensating variation when the budget frontier changes.
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Figure 2: Change in the relationships between rents and school quality as a result of policy
change.
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Figure 3: Compensating variation estimates for quartiles of preference for school quality,
GBP.
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Figure 4: Compensating variation estimates for deciles of preference for school quality, GBP.
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Appendix

A Supplementary Material

Table A.1: Descriptive statistics for matched property-
school observations.

Variable Mean SD
Total weekly rent 111.17 42.62
Net household income including savings and benefits 396.37 146.72
Total average point score per pupil 362.65 67.30
Logarithm of total average point score per pupil 5.88 0.20
Floor area, sqm 65.85 20.91
Number of floors:
1 0.10 0.30
2 0.67 0.47
3 0.13 0.34
4 0.04 0.21
5 or more 0.05 0.21

Dwelling type:
end terrace 0.12 0.33
mid terrace 0.22 0.41
semi detached 0.20 0.40
detached 0.01 0.12
bungalow 0.10 0.30
converted flat 0.04 0.19
purpose built flat, low rise 0.27 0.45
purpose built flat, high rise 0.03 0.16

Dwelling age:
pre 1850 0.01 0.10
1850 to 1899 0.05 0.22
1900 to 1918 0.06 0.23
1919 to 1944 0.13 0.34
1945 to 1964 0.27 0.45
1965 to 1974 0.17 0.37
1975 to 1980 0.07 0.26
1981 to 1990 0.08 0.28
1991 to 2002 0.08 0.27
post 2002 0.07 0.25

Number of bedrooms:
1 0.23 0.42
2 0.37 0.48
3 0.36 0.48
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Table A.1: Descriptive statistics for matched property-
school observations.

Variable Mean SD
4 0.04 0.19
5 or more 0.01 0.07

Number of living rooms:
1 0.01 0.08
2 0.88 0.32
3 0.10 0.30
4 0.00 0.07
5 or more 0.00 0.04

Number of bathrooms:
1 0.95 0.21
2 0.04 0.20
3 or more 0.00 0.06

Tenure type:
Private rented 0.28 0.45
Local Authority 0.30 0.46
Housing Association 0.42 0.49

Housing benefits:
Yes 0.56 0.50
No 0.44 0.50

Deprivation decile:
1 - Most deprived 0.23 0.42
2 0.18 0.38
3 0.14 0.35
4 0.12 0.32
5 0.09 0.28
6 0.08 0.27
7 0.06 0.24
8 0.05 0.22
9 0.04 0.19
10 - Least deprived 0.02 0.14

Region:
North East 0.07 0.25
North West 0.15 0.35
Yorkshire and the Humber 0.12 0.32
East Midlands 0.09 0.28
West Midlands 0.11 0.31
East 0.12 0.33
London 0.12 0.32
South East 0.14 0.35
South West 0.09 0.29

Observations 5635

40



Table A.2: Correlation between floor area and other
property characteristics.

Variable Floor area, sqm
Floor area squared 0.929
Number of floors:
2 0.196
3 0.002
4 -0.036
5 or more -0.077

Dwelling type:
mid terrace 0.213
semi detached 0.229
detached 0.243
bungalow -0.221
converted flat -0.117
purpose built flat, low rise -0.361
purpose built flat, high rise -0.050

Dwelling age:
1850 to 1899 0.044
1900 to 1918 0.058
1919 to 1944 0.052
1945 to 1964 0.031
1965 to 1974 -0.044
1975 to 1980 -0.066
1981 to 1990 -0.134
1991 to 2002 -0.022
post 2002 0.064

Number of bedrooms:
2 -0.124
3 0.434
4 0.353
5 or more 0.228

Number of living rooms:
2 -0.273
3 0.282
4 0.147
5 or more 0.014

Number of bathrooms:
2 0.275
3 or more 0.148

Deprivation decile:
2 -0.021
3 -0.010
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Table A.2: Correlation between floor area and other
property characteristics.

Variable Floor area, sqm
4 -0.010
5 0.008
6 0.021
7 -0.015
8 -0.025
9 0.024
10 - Least deprived 0.008

Tenure type:
Local Authority -0.051
Housing Association -0.048

Housing benefits:
No 0.091

Observations 5635

42



Table A.3: Principal component loadings and unex-
plained variance for property characteristics.

Variable Loadings on PC1 Unexplained Variance
Floor area, sqm 0.4024 .371
Floor area - squared, sqm 0.3672 .4762
Number of floors:
2 0.2669 .7233
3 -0.1029 .9589
4 -0.0940 .9657
5 or more -0.1235 .9407

Dwelling type:
mid terrace 0.1535 .9085
semi detached 0.2119 .8257
detached 0.1521 .9102
bungalow -0.1457 .9175
converted flat -0.0477 .9911
purpose built flat, low rise -0.2737 .709
purpose built flat, high rise -0.0952 .9648

Dwelling age:
1850 to 1899 0.0430 .9928
1900 to 1918 0.0626 .9848
1919 to 1944 0.1004 .9609
1945 to 1964 0.0264 .9973
1965 to 1974 -0.0813 .9743
1975 to 1980 -0.0612 .9854
1981 to 1990 -0.0739 .9788
1991 to 2002 -0.0088 .9997
post 2002 -0.0179 .9988

Number of bedrooms:
2 -0.1708 .8867
3 0.3083 .6308
4 0.1599 .9007
5 or more 0.0944 .9654

Number of living rooms:
2 -0.2834 .6881
3 0.2790 .6977
4 0.1043 .9577
5 or more 0.0168 .9989

Number of bathrooms:
2 0.1453 .918
3 or more 0.0660 .9831

Deprivation decile:
2 -0.0379 .9944
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Table A.3: Principal component loadings and unex-
plained variance for property characteristics.

Variable Loadings on PC1 Unexplained Variance
3 -0.0101 .9996
4 0.0064 .9998
5 0.0069 .9998
6 0.0198 .9985
7 0.0080 .9998
8 -0.0021 1
9 0.0169 .9989
10 - Least deprived 0.0163 .999

Tenure type:
Local Authority -0.0529 .9891
Housing Association -0.0384 .9943

Housing benefits:
No 0.0707 .9806

Observations 5635
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Table A.4: Regression of Rental Price on School Quality
and Housing Characteristics

Variable name Est. SE
Logarithm of total average point score per pupil 5.193** (2.073)
Floor area, sqm -0.148** (0.071)
Floor area squared 0.001*** (0.000)
Number of floors
1 (reference) . (.)
2 -17.089 (11.948)
3 -16.826 (12.013)
4 -13.656 (12.131)
5 or more -20.251* (12.301)

Dwelling type
end terrace (reference) . (.)
mid terrace -0.117 (1.409)
semi detached 0.337 (1.445)
detached 0.111 (3.647)
bungalow -17.355 (11.990)
converted flat 2.430 (2.648)
purpose built flat, low rise 1.279 (1.713)
purpose built flat, high rise 13.560*** (3.992)

Dwelling age
pre 1850 (reference) . (.)
1850 to 1899 -1.883 (4.118)
1900 to 1918 3.011 (4.116)
1919 to 1944 8.062** (4.006)
1945 to 1964 6.368 (3.959)
1965 to 1974 6.773* (4.000)
1975 to 1980 8.251** (4.143)
1981 to 1990 9.330** (4.108)
1991 to 2002 11.459*** (4.111)
post 2002 14.263*** (4.152)

Number of bedrooms
1 (reference) . (.)
2 10.832*** (1.316)
3 19.304*** (1.786)
4 30.049*** (2.906)
5 or more 20.708*** (6.005)

Number of living rooms
1 (reference) . (.)
2 7.406 (4.800)
3 10.077** (5.000)
4 7.427 (7.735)
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Table A.4: Regression of Rental Price on School Quality
and Housing Characteristics

Variable name Est. SE
5 or more 18.043* (10.044)

Number of bathrooms
1 (reference) . (.)
2 12.239*** (2.111)
3 or more 26.237*** (6.907)

Tenure type
Private rented (reference) . (.)
Local Authority -50.678*** (1.205)
Housing Association -40.394*** (1.078)

Housing benefits
Yes (reference) . (.)
No -3.527*** (0.819)

Deprivation decile
1 - Most deprived (reference) . (.)
2 -0.095 (1.255)
3 0.911 (1.368)
4 4.375*** (1.467)
5 8.783*** (1.619)
6 9.549*** (1.692)
7 11.709*** (1.842)
8 9.402*** (2.041)
9 14.171*** (2.315)
10 - Least deprived 14.833*** (2.927)

Region
North East (reference) . (.)
North West 1.923 (1.816)
Yorkshire and the Humber -1.820 (1.880)
East Midlands 1.418 (2.002)
West Midlands 7.208*** (1.922)
East 19.636*** (1.905)
London 59.699*** (2.021)
South East 28.304*** (1.888)
South West 9.916*** (2.012)

Constant 88.135*** (18.272)
R2 0.54
Observations 5635

Note: Standard errors in parentheses. * p<0.10, ** p<0.05, *** p<0.01
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